Serveur d'exploration sur le Covid à Stanford

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

p38 MAPK inhibition: A promising therapeutic approach for COVID-19.

Identifieur interne : 000140 ( Main/Exploration ); précédent : 000139; suivant : 000141

p38 MAPK inhibition: A promising therapeutic approach for COVID-19.

Auteurs : Joseph M. Grimes [États-Unis] ; Kevin V. Grimes [États-Unis]

Source :

RBID : pubmed:32422320

Descripteurs français

English descriptors

Abstract

COVID-19, caused by the SARS-CoV-2 virus, is a major source of morbidity and mortality due to its inflammatory effects in the lungs and heart. The p38 MAPK pathway plays a crucial role in the release of pro-inflammatory cytokines such as IL-6 and has been implicated in acute lung injury and myocardial dysfunction. The overwhelming inflammatory response in COVID-19 infection may be caused by disproportionately upregulated p38 activity, explained by two mechanisms. First, angiotensin-converting enzyme 2 (ACE2) activity is lost during SARS-CoV-2 viral entry. ACE2 is highly expressed in the lungs and heart and converts Angiotensin II into Angiotensin 1-7. Angiotensin II signals proinflammatory, pro-vasoconstrictive, pro-thrombotic activity through p38 MAPK activation, which is countered by Angiotensin 1-7 downregulation of p38 activity. Loss of ACE2 upon viral entry may tip the balance towards destructive p38 signaling through Angiotensin II. Second, SARS-CoV was previously shown to directly upregulate p38 activity via a viral protein, similar to other RNA respiratory viruses that may hijack p38 activity to promote replication. Given the homology between SARS-CoV and SARS-CoV-2, the latter may employ a similar mechanism. Thus, SARS-CoV-2 may induce overwhelming inflammation by directly activating p38 and downregulating a key inhibitory pathway, while simultaneously taking advantage of p38 activity to replicate. Therapeutic inhibition of p38 could therefore attenuate COVID-19 infection. Interestingly, a prior preclinical study showed protective effects of p38 inhibition in a SARS-CoV mouse model. A number of p38 inhibitors are in the clinical stage and should be considered for clinical trials in serious COVID-19 infection.

DOI: 10.1016/j.yjmcc.2020.05.007
PubMed: 32422320
PubMed Central: PMC7228886


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">p38 MAPK inhibition: A promising therapeutic approach for COVID-19.</title>
<author>
<name sortKey="Grimes, Joseph M" sort="Grimes, Joseph M" uniqKey="Grimes J" first="Joseph M" last="Grimes">Joseph M. Grimes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Vagelos College of Physicians And Surgeons, Columbia University; 630 W. 168th St, New York, NY 10032, United States of America. Electronic address: jmg2330@cumc.columbia.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vagelos College of Physicians And Surgeons, Columbia University; 630 W. 168th St, New York, NY 10032</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grimes, Kevin V" sort="Grimes, Kevin V" uniqKey="Grimes K" first="Kevin V" last="Grimes">Kevin V. Grimes</name>
<affiliation wicri:level="4">
<nlm:affiliation>Chemical and Systems Biology, Stanford University, Stanford, CA; 269 Campus Drive CCSR 3145, Stanford, CA 94305, United States of America. Electronic address: kgrimes@stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chemical and Systems Biology, Stanford University, Stanford, CA; 269 Campus Drive CCSR 3145, Stanford, CA 94305</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32422320</idno>
<idno type="pmid">32422320</idno>
<idno type="doi">10.1016/j.yjmcc.2020.05.007</idno>
<idno type="pmc">PMC7228886</idno>
<idno type="wicri:Area/Main/Corpus">000711</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000711</idno>
<idno type="wicri:Area/Main/Curation">000711</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000711</idno>
<idno type="wicri:Area/Main/Exploration">000711</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">p38 MAPK inhibition: A promising therapeutic approach for COVID-19.</title>
<author>
<name sortKey="Grimes, Joseph M" sort="Grimes, Joseph M" uniqKey="Grimes J" first="Joseph M" last="Grimes">Joseph M. Grimes</name>
<affiliation wicri:level="2">
<nlm:affiliation>Vagelos College of Physicians And Surgeons, Columbia University; 630 W. 168th St, New York, NY 10032, United States of America. Electronic address: jmg2330@cumc.columbia.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Vagelos College of Physicians And Surgeons, Columbia University; 630 W. 168th St, New York, NY 10032</wicri:regionArea>
<placeName>
<region type="state">État de New York</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Grimes, Kevin V" sort="Grimes, Kevin V" uniqKey="Grimes K" first="Kevin V" last="Grimes">Kevin V. Grimes</name>
<affiliation wicri:level="4">
<nlm:affiliation>Chemical and Systems Biology, Stanford University, Stanford, CA; 269 Campus Drive CCSR 3145, Stanford, CA 94305, United States of America. Electronic address: kgrimes@stanford.edu.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Chemical and Systems Biology, Stanford University, Stanford, CA; 269 Campus Drive CCSR 3145, Stanford, CA 94305</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
<settlement type="city">Stanford (Californie)</settlement>
</placeName>
<orgName type="university">Université Stanford</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Journal of molecular and cellular cardiology</title>
<idno type="eISSN">1095-8584</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Betacoronavirus (pathogenicity)</term>
<term>COVID-19 (MeSH)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Coronavirus Infections (enzymology)</term>
<term>Enzyme Activation (MeSH)</term>
<term>Host-Pathogen Interactions (physiology)</term>
<term>Humans (MeSH)</term>
<term>Inflammation (drug therapy)</term>
<term>Inflammation (virology)</term>
<term>Lung (metabolism)</term>
<term>Lung (physiopathology)</term>
<term>Lung (virology)</term>
<term>Pandemics (MeSH)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Pneumonia, Viral (enzymology)</term>
<term>Protein Kinase Inhibitors (pharmacology)</term>
<term>SARS-CoV-2 (MeSH)</term>
<term>p38 Mitogen-Activated Protein Kinases (antagonists & inhibitors)</term>
<term>p38 Mitogen-Activated Protein Kinases (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Activation enzymatique (MeSH)</term>
<term>Animaux (MeSH)</term>
<term>Antiviraux (pharmacologie)</term>
<term>Betacoronavirus (pathogénicité)</term>
<term>Humains (MeSH)</term>
<term>Infections à coronavirus (enzymologie)</term>
<term>Infections à coronavirus (traitement médicamenteux)</term>
<term>Inflammation (traitement médicamenteux)</term>
<term>Inflammation (virologie)</term>
<term>Inhibiteurs de protéines kinases (pharmacologie)</term>
<term>Interactions hôte-pathogène (physiologie)</term>
<term>Pandémies (MeSH)</term>
<term>Pneumopathie virale (enzymologie)</term>
<term>Pneumopathie virale (traitement médicamenteux)</term>
<term>Poumon (métabolisme)</term>
<term>Poumon (physiopathologie)</term>
<term>Poumon (virologie)</term>
<term>p38 Mitogen-Activated Protein Kinases (antagonistes et inhibiteurs)</term>
<term>p38 Mitogen-Activated Protein Kinases (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Protein Kinase Inhibitors</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Inflammation</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Poumon</term>
<term>p38 Mitogen-Activated Protein Kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogenicity" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pathogénicité" xml:lang="fr">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
<term>Inhibiteurs de protéines kinases</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Interactions hôte-pathogène</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Host-Pathogen Interactions</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Lung</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Inflammation</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" qualifier="virologie" xml:lang="fr">
<term>Inflammation</term>
<term>Poumon</term>
</keywords>
<keywords scheme="MESH" qualifier="virology" xml:lang="en">
<term>Inflammation</term>
<term>Lung</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>COVID-19</term>
<term>Enzyme Activation</term>
<term>Humans</term>
<term>Pandemics</term>
<term>SARS-CoV-2</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Activation enzymatique</term>
<term>Animaux</term>
<term>Humains</term>
<term>Pandémies</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">COVID-19, caused by the SARS-CoV-2 virus, is a major source of morbidity and mortality due to its inflammatory effects in the lungs and heart. The p38 MAPK pathway plays a crucial role in the release of pro-inflammatory cytokines such as IL-6 and has been implicated in acute lung injury and myocardial dysfunction. The overwhelming inflammatory response in COVID-19 infection may be caused by disproportionately upregulated p38 activity, explained by two mechanisms. First, angiotensin-converting enzyme 2 (ACE2) activity is lost during SARS-CoV-2 viral entry. ACE2 is highly expressed in the lungs and heart and converts Angiotensin II into Angiotensin 1-7. Angiotensin II signals proinflammatory, pro-vasoconstrictive, pro-thrombotic activity through p38 MAPK activation, which is countered by Angiotensin 1-7 downregulation of p38 activity. Loss of ACE2 upon viral entry may tip the balance towards destructive p38 signaling through Angiotensin II. Second, SARS-CoV was previously shown to directly upregulate p38 activity via a viral protein, similar to other RNA respiratory viruses that may hijack p38 activity to promote replication. Given the homology between SARS-CoV and SARS-CoV-2, the latter may employ a similar mechanism. Thus, SARS-CoV-2 may induce overwhelming inflammation by directly activating p38 and downregulating a key inhibitory pathway, while simultaneously taking advantage of p38 activity to replicate. Therapeutic inhibition of p38 could therefore attenuate COVID-19 infection. Interestingly, a prior preclinical study showed protective effects of p38 inhibition in a SARS-CoV mouse model. A number of p38 inhibitors are in the clinical stage and should be considered for clinical trials in serious COVID-19 infection.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32422320</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2021</Year>
<Month>01</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8584</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>144</Volume>
<PubDate>
<Year>2020</Year>
<Month>07</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular and cellular cardiology</Title>
<ISOAbbreviation>J Mol Cell Cardiol</ISOAbbreviation>
</Journal>
<ArticleTitle>p38 MAPK inhibition: A promising therapeutic approach for COVID-19.</ArticleTitle>
<Pagination>
<MedlinePgn>63-65</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0022-2828(20)30189-9</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.yjmcc.2020.05.007</ELocationID>
<Abstract>
<AbstractText>COVID-19, caused by the SARS-CoV-2 virus, is a major source of morbidity and mortality due to its inflammatory effects in the lungs and heart. The p38 MAPK pathway plays a crucial role in the release of pro-inflammatory cytokines such as IL-6 and has been implicated in acute lung injury and myocardial dysfunction. The overwhelming inflammatory response in COVID-19 infection may be caused by disproportionately upregulated p38 activity, explained by two mechanisms. First, angiotensin-converting enzyme 2 (ACE2) activity is lost during SARS-CoV-2 viral entry. ACE2 is highly expressed in the lungs and heart and converts Angiotensin II into Angiotensin 1-7. Angiotensin II signals proinflammatory, pro-vasoconstrictive, pro-thrombotic activity through p38 MAPK activation, which is countered by Angiotensin 1-7 downregulation of p38 activity. Loss of ACE2 upon viral entry may tip the balance towards destructive p38 signaling through Angiotensin II. Second, SARS-CoV was previously shown to directly upregulate p38 activity via a viral protein, similar to other RNA respiratory viruses that may hijack p38 activity to promote replication. Given the homology between SARS-CoV and SARS-CoV-2, the latter may employ a similar mechanism. Thus, SARS-CoV-2 may induce overwhelming inflammation by directly activating p38 and downregulating a key inhibitory pathway, while simultaneously taking advantage of p38 activity to replicate. Therapeutic inhibition of p38 could therefore attenuate COVID-19 infection. Interestingly, a prior preclinical study showed protective effects of p38 inhibition in a SARS-CoV mouse model. A number of p38 inhibitors are in the clinical stage and should be considered for clinical trials in serious COVID-19 infection.</AbstractText>
<CopyrightInformation>© 2020 The Authors. Published by Elsevier Ltd.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Grimes</LastName>
<ForeName>Joseph M</ForeName>
<Initials>JM</Initials>
<AffiliationInfo>
<Affiliation>Vagelos College of Physicians And Surgeons, Columbia University; 630 W. 168th St, New York, NY 10032, United States of America. Electronic address: jmg2330@cumc.columbia.edu.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Grimes</LastName>
<ForeName>Kevin V</ForeName>
<Initials>KV</Initials>
<AffiliationInfo>
<Affiliation>Chemical and Systems Biology, Stanford University, Stanford, CA; 269 Campus Drive CCSR 3145, Stanford, CA 94305, United States of America. Electronic address: kgrimes@stanford.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Cell Cardiol</MedlineTA>
<NlmUniqueID>0262322</NlmUniqueID>
<ISSNLinking>0022-2828</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D047428">Protein Kinase Inhibitors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.24</RegistryNumber>
<NameOfSubstance UI="D048051">p38 Mitogen-Activated Protein Kinases</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000472" MajorTopicYN="N">pathogenicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086382" MajorTopicYN="N">COVID-19</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004789" MajorTopicYN="N">Enzyme Activation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007249" MajorTopicYN="N">Inflammation</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="N">drug therapy</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008168" MajorTopicYN="N">Lung</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="N">physiopathology</QualifierName>
<QualifierName UI="Q000821" MajorTopicYN="N">virology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D047428" MajorTopicYN="N">Protein Kinase Inhibitors</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000086402" MajorTopicYN="N">SARS-CoV-2</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D048051" MajorTopicYN="N">p38 Mitogen-Activated Protein Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">ACE2</Keyword>
<Keyword MajorTopicYN="Y">COVID-19</Keyword>
<Keyword MajorTopicYN="Y">SARS-CoV-2</Keyword>
<Keyword MajorTopicYN="Y">p38 MAPK</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>18</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>28</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>19</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32422320</ArticleId>
<ArticleId IdType="pii">S0022-2828(20)30189-9</ArticleId>
<ArticleId IdType="doi">10.1016/j.yjmcc.2020.05.007</ArticleId>
<ArticleId IdType="pmc">PMC7228886</ArticleId>
</ArticleIdList>
<pmc-dir>pmcsd</pmc-dir>
<ReferenceList>
<Reference>
<Citation>Br J Clin Pharmacol. 2013 Jul;76(1):99-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23215699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2020 May 8;126(10):1456-1474</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32264791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Med. 2018 Jan;41(1):409-420</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29138810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Pharmacol Res. 2020 Aug;158:104850</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32360580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 May 2;395(10234):1417-1418</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32325026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Lancet. 2020 Mar 28;395(10229):1054-1062</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32171076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Intensive Care Med. 2020 May;46(5):846-848</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32125452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Surg Res. 2006 Aug;134(2):335-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16542681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 1999 Apr 6;99(13):1685-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10190877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>JAMA. 2016 Apr 19;315(15):1591-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27043082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>N Engl J Med. 2020 Apr 23;382(17):e38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32268022</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2011 Oct;51(4):485-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21062627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2014 Dec;64(6):1368-1375</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25225202</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Pathog. 2014 Aug 14;10(8):e1004320</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25122212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Soc Nephrol. 2017 May;28(5):1350-1361</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28151411</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2007 Mar;49(3):481-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17224470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Sci Monit. 2018 Oct 27;24:7673-7681</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30367682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2010 Nov;84(21):11359-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20702616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jan 3;289(1):13-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24189062</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Pathol. 2004 Jun;203(2):631-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15141377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Res. 2005 Jan;15(1):11-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15686620</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Br J Pharmacol. 2013 Jun;169(3):477-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23488800</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2011 Feb 8;123(5):515-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21262998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Med Rep. 2017 Dec;16(6):9652-9658</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29039541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Care Med. 2015 Sep;43(9):1859-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26102252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Pathol. 2008 May;172(5):1174-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18403595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci China Life Sci. 2020 Mar;63(3):364-374</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32048163</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Oct 14;286(41):35466-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21865167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Lung Cell Mol Physiol. 2015 Aug 15;309(4):L333-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26024891</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2020 Apr 16;181(2):271-280.e8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32142651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2013 Jun 1;304(11):C1073-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23535237</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2020 Jun 5;126(12):1671-1681</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32302265</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2006 Jan;80(2):785-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16378980</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
<li>État de New York</li>
</region>
<settlement>
<li>Stanford (Californie)</li>
</settlement>
<orgName>
<li>Université Stanford</li>
</orgName>
</list>
<tree>
<country name="États-Unis">
<region name="État de New York">
<name sortKey="Grimes, Joseph M" sort="Grimes, Joseph M" uniqKey="Grimes J" first="Joseph M" last="Grimes">Joseph M. Grimes</name>
</region>
<name sortKey="Grimes, Kevin V" sort="Grimes, Kevin V" uniqKey="Grimes K" first="Kevin V" last="Grimes">Kevin V. Grimes</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidStanfordV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000140 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000140 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidStanfordV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32422320
   |texte=   p38 MAPK inhibition: A promising therapeutic approach for COVID-19.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32422320" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidStanfordV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Tue Feb 2 21:24:25 2021. Site generation: Tue Feb 2 21:26:08 2021